24S-hydroxycholesterol and 25-hydroxycholesterol differentially impact hippocampal neuronal survival following oxygen-glucose deprivation

نویسندگان

  • Min-Yu Sun
  • Amanda Taylor
  • Charles F Zorumski
  • Steven Mennerick
چکیده

N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptor mediating excitatory transmission throughout the CNS, participate in ischemia-induced neuronal death. Unfortunately, undesired side effects have limited the strategy of inhibiting/blocking NMDARs as therapy. Targeting endogenous positive allosteric modulators of NMDAR function may offer a strategy with fewer downsides. Here, we explored whether 24S-hydroxycholesterol (24S-HC), an endogenous positive NMDAR modulator characterized recently by our group, participates in NMDAR-mediated excitotoxicity following oxygen-glucose deprivation (OGD) in primary neuron cultures. 24S-HC is the major brain cholesterol metabolite produced exclusively in neurons near sites of glutamate transmission. By selectively potentiating NMDAR current, 24S-HC may participate in NMDAR-mediated excitotoxicity following energy failure, thus impacting recovery after stroke. In support of this hypothesis, our findings indicate that exogenous application of 24S-HC exacerbates NMDAR-dependent excitotoxicity in primary neuron culture following OGD, an ischemic-like challenge. Similarly, enhancement of endogenous 24S-HC synthesis reduced survival rate. On the other hand, reducing endogenous 24S-HC synthesis alleviated OGD-induced cell death. We found that 25-HC, another oxysterol that antagonizes 24S-HC potentiation, partially rescued OGD-mediated cell death in the presence or absence of exogenous 24S-HC application, and 25-HC exhibited NMDAR-dependent/24S-HC-dependent neuroprotection, as well as NMDAR-independent neuroprotection in rat tissue but not mouse tissue. Our findings suggest that both endogenous and exogenous 24S-HC exacerbate OGD-induced damage via NMDAR activation, while 25-HC exhibits species dependent neuroprotection through both NMDAR-dependent and independent mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous 24S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices.

N-methyl-D-aspartate receptors (NMDARs), a major subtype of glutamate receptors mediating excitatory transmission throughout the central nervous system (CNS), play critical roles in governing brain function and cognition. Because NMDAR dysfunction contributes to the etiology of neurological and psychiatric disorders including stroke and schizophrenia, NMDAR modulators are potential drug candida...

متن کامل

Serum 24S-hydroxycholesterol and hippocampal size in middle-aged normal individuals.

The present study assessed the association between serum 24S-hydroxycholesterol (24S-OH-Chol) and 27-hydroxycholesterol (27-OH-Chol) and hippocampal volumes in 69 middle-aged cognitively normal individuals. Results showed that subjects with high levels of oxysterols had significantly larger hippocampal volumes than subjects with low levels of oxysterols. Multiple regression analysis revealed th...

متن کامل

Adaptive responses induced by 24S-hydroxycholesterol through liver X receptor pathway reduce 7-ketocholesterol-caused neuronal cell death☆

Lipid peroxidation products have been known to induce cellular adaptive responses and enhance tolerance against subsequent oxidative stress through up-regulation of antioxidant compounds and enzymes. 24S-hydroxycholesterol (24SOHC) which is endogenously produced oxysterol in the brain plays an important role in maintaining brain cholesterol homeostasis. In this study, we evaluated adaptive resp...

متن کامل

Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer's disease.

24S-hydroxycholesterol is a side-chain oxidized oxysterol formed in the brain that is continuously crossing the blood-brain barrier to reach the circulation. There may be an opposite flux of 27-hydroxycholesterol, which is formed to a lower extent in the brain than in most other organs. Here we measured cholesterol, lathosterol, 24S- and 27-hydroxycholesterol, and plant sterols in four differen...

متن کامل

Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels.

PURPOSE Genetics has made significant contributions to the study of glaucoma over the past few decades. Cholesterol-24S-hydroxylase (CYP46A1) is a cholesterol-metabolizing enzyme that is especially expressed in retinal ganglion cells. CYP46A1 and its metabolic product, 24S-hydroxycholesterol, have been linked to neurodegeneration. A single-nucleotide polymorphism (SNP) in the CYP46A1 gene, desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017